江西省南昌市七校2016-2017学年高一第二学期期末考试数学试卷

发布于:2021-06-11 10:16:47

2016~2017 学年度第二学期高一数学期末联考测试卷 2017-6-22 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 22 小题,共 150 分.共 4 开,考试时 间 120 分钟,考生作答时将答案答在答题卡上,在本试卷上答题无效. 第Ⅰ卷(选择题,共 60 分) 一、选择题(本大题共 12 小题,每小题 5 分,共 60 分) 1.若 a<0,-1<b<0,则有( A.a>ab>ab 2 2 ) 2 2 B.ab >ab>a C.ab>ab >a D.ab>a>ab 2. 从 2 0 12 名学生中选取 50 名学生参加数学竞赛,若采用下面的方法选取:先用简单随机抽样从 2 012 人中剔除 12 人,剩下的 2 000 人再按系统抽样方法抽取 50 人,则在 2 012 人中,每人入选的概率 为( ) B.均不相等 C.都相等,且为 25 1 006 1 D.都相等,且为 40 A.不全相等 3.下表是某厂 1~4 月份用水量(单位:百吨)的一组数据: 月份 x 用水量 y 1 4.5 2 4 3 3 4 2.5 由散点图可知,用水量 y 与月份 x 之间有较好的线性相关关系,其线性回归方程是 y ? ?0.7 x ? a ,则 a =( ) A.10.5 B.5.15 C.5.2 D.5.25 4.有 2 个人从一座 10 层大楼的底层进 入电梯,设他们中的每一个人自第二层开始在每一层离开是 等可能的,则 2 个人在不同层离开的概率为( A. ) D. 1 9 B. 2 9 C. 4 9 8 9 ) 5.若运行所给程序输出的值是 16,则输入的实数 x 值为( INPUT x IF ELSE x<=0 THEN y=x2 END IF PRINT y END A.32 B. 8 C.-4 或 8 D. 4 或-4 或 8 6. 已知某 8 个数据的*均数为 5,方差为 3,现又加入一个新数据 5,此时这 9 个数的*均数为 x , 方差为 s ,则( 2 2 ) 2 A. x =5,s >3 B. x =5,s <3 C. x >5,s <3 ) 2 D. x >5,s >3 2 2 8 7.已知 + =1(x>0,y>0),则 x+y 的最小值为( x y A .12 B.14 C.16 D.18 ) 8. 某程序框图如右图所示,若输出的 S ? 57 ,则判断框内应填入( A. k ? 3 B. k ? 4 C. k ? 5 D. k ? 6 9. 如图所示 是一样本的频率分布直方图,则由图形中的数据,可以估计众 数与中位数分别是( ) A.12.5;12.5 2 B.13;13 C.13;12.5 D.12.5;13 ) 10. 不等式(a-3)x +2(a-3)x-4<0 对于一切 x∈R 恒成立,那么 a 的取值范围是( A.(-∞,-3) B.(-1,3] C.(-∞,-3] D.(-3,3] 11.圆 O 内有一内接正三角形,向圆 O 内随机投一点,则该点落在正三角形内的概率为( 3 3 A. 8π B. 3 2π C. 3 3 4π D. 3 π ) 12.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到 车站距离成正比.如果在距离车站 10 km 处建仓库,则土地费用和运输费 用分别为 2 万元和 8 万元,那么要使两项费用之和最小,仓库应建在离车 站( ) A.5 km 处 B.4 km 处 C.3 km 处 D.2 km 处 第Ⅱ卷(非选择题,共 90 分) 二、填空题(本大题共 4 小题,每小题 5 分,共 20 分) 13.设 0<x<2,函数 f(x)= 3x -3x 的最大值是________; ; 14.执行如右图所示的程序框图,输出的 T ? 2 15. 若关于 x 的不等式 x -ax-a≤-3 的解集不是空集,则实数 a 的取值范围是___ _____; 16.在由 1,2,3,4,5 组成可重复数字的二位数中任取一个数,如 21,22 等表示的数中只有一个偶数 “2”, 我们称这样的数只有一个偶数数字, 则组成的二位数中只有一个偶数数字的概率为________. 三、解答题(本大题共 6 小题,共 70 分.解答题应写出文字说明,证明过程或演算步骤) 17.(本小题满分 10 分) 解关于 x 的不等式: x-a <0(a∈R). x-a2 18. (本小题满分 12 分) 按右图所示的程序框图操作: (1)写出输出的数所组成的数集.若将输出的数按照输出的 顺序从前往后依次排列,则得到数列 ?an ? ,请写出数列 ?an ? 的通 项公式; (2)如何变更 A 框内的赋值语句,使得根据这个程序框图所 输出的数恰好是数列 ?2n? 的前 7 项? (3)如何变更 B 框内的赋值语句,使得根据这个程序框图所 输出的数恰好是数列 ?3n ? 2? 的前 7 项? 19.(本小题满分 12 分) 某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如 下表所示: 零件的个数 x(个) 加工的时间 y(h) 2 2.5 3 3 4 4 5 4.5 (1)在给定的坐标系中画出表中数据的散点图; ^ ^ ^ (2)求出 y 关于 x 的线性回归方程y=bx+a,并在坐标系中画出回归直线; (3)试预测加 工 10 个零件需要多少时间? 参考公式: b ? ?? n i ?1 xi ? x n i ?? yi ? y 2 ? ? ? x y ? ? nx y n ? ? x ? x? i ?1 ? i ?1 i i ?x i ?1 n 2 i ? nx 2 , a ? y ? bx . 20.(本小题满分 12 分) 某校高一(1)班全体男生的一次数学测试

相关推荐

最新更新

猜你喜欢